Laser capture microdissection for analysis of macrophage gene expression from atherosclerotic lesions.
نویسندگان
چکیده
Coronary artery disease, resulting from atherosclerosis, is the leading cause of death in the Western world. Most previous studies have subjected atherosclerotic arteries, a tissue of mixed cellular composition, to homogenization in order to identify the factors in plaque development, thereby obscuring information relevant to specific cell types. Because macrophage foam cells are critical mediators in atherosclerotic plaque advancement, we reasoned that performing gene analysis on those cells would provide specific insight in novel regulatory factors and potential therapeutic targets. We demonstrated for the first time in vascular biology that foam cell-specific RNA can be isolated by laser capture microdissection (LCM) of plaques. As expected, compared to whole tissue, a significant enrichment in foam cell-specific RNA transcripts was observed. Furthermore, because regression of atherosclerosis is a tantalizing clinical goal, we developed and reported a transplantation-based mouse model. This involved allowing plaques to form in apoE-/- mice and then changing the plaque's plasma environment from hyperlipidemia to normolipidemia. Under those conditions, rapid regression ensued in a process involving emigration of plaque foam cells to regional and systemic lymph nodes. Using LCM, we were able to show that under regression conditions, there was decreased expression in foam cells of inflammatory genes, but an up-regulation of cholesterol efflux genes. Interestingly, we also found that increased expression of chemokine receptor CCR7, a known factor in dendritic cell migration, was required for regression. In conclusion, the LCM methods described in this chapter, which have already lead to a number of striking findings, will likely further facilitate the study of cell type-specific gene expression in animal and human plaques during various stages of atherosclerosis, and after genetic, pharmacologic, and environmental perturbations.
منابع مشابه
Laser Capture Microdissection (LCM) for the Analysis of Macrophage Gene Expression from Atherosclerotic Lesions
Macrophage foam cells are integral in the development of atherosclerotic lesions, however gene expression studies are complicated by the cellular heterogeneity of atherosclerotic plaque. This application note describes a protocol for LCM of cells identifi ed immunohistochemically, followed by realtime RT-PCR to selectively analyze RNA from foam cells of apolipoprotein E-defi cient mice. The spe...
متن کاملLaser capture microdissection analysis of gene expression in macrophages from atherosclerotic lesions of apolipoprotein E-deficient mice.
Macrophage foam cells are integral in the development of atherosclerotic lesions. Gene expression analysis of lesional macrophage foam cells is complicated by the cellular heterogeneity of atherosclerotic plaque and the presence of lesions of various degrees of severity. To overcome these limitations, we tested the ability of laser capture microdissection (LCM) and real-time quantitative revers...
متن کاملMacrophage expression of peroxisome proliferator-activated receptor-alpha reduces atherosclerosis in low-density lipoprotein receptor-deficient mice.
BACKGROUND The peroxisome proliferator-activated receptor-alpha (PPARalpha) plays important roles in lipid metabolism, inflammation, and atherosclerosis. PPARalpha ligands have been shown to reduce cardiovascular events in high-risk subjects. PPARalpha expression by arterial cells, including macrophages, may exert local antiatherogenic effects independent of plasma lipid changes. METHODS AND ...
متن کاملHypoxia-Inducible Factor-1α Expression in Macrophages Promotes Development of Atherosclerosis.
OBJECTIVE Atherosclerotic lesions contain hypoxic areas, but the pathophysiological importance of hypoxia is unknown. Hypoxia-inducible factor-1α (HIF-1α) is a key transcription factor in cellular responses to hypoxia. We investigated the hypothesis that HIF-1α has effects on macrophage biology that promotes atherogenesis in mice. APPROACH AND RESULTS Studies with molecular probes, immunostai...
متن کاملTranscriptional profiling of foam cells in response to hypercholesterolemia
Hypercholesterolemia is a main risk factor for atherosclerosis development. Arterial macrophages, or foam cells, take-up and process lipoprotein particles deposited in arteries, and store much of the cholesterol carried by these particles in their cytoplasm. However, the effects of exposure to different cholesterol levels on foam cells remain poorly understood. Given the remarkable plasticity o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Methods in molecular biology
دوره 293 شماره
صفحات -
تاریخ انتشار 2005